The sex peptide of Drosophila melanogaster: female post-mating responses analyzed by using RNA interference.

نویسندگان

  • Tracey Chapman
  • Jenny Bangham
  • Giovanna Vinti
  • Beth Seifried
  • Oliver Lung
  • Mariana F Wolfner
  • Hazel K Smith
  • Linda Partridge
چکیده

Mating induces profound changes in female insect behavior and physiology. In Drosophila melanogaster, mating causes a reduction in sexual receptivity and an elevation in egg production for at least 5 days. Injection of the seminal fluid sex peptide (SP) induces both responses in virgin females, but only for 1-2 days. The role of SP in eliciting the responses to mating remains to be elucidated. Functional redundancy between seminal fluid components may occur. In addition, mating with spermless males results in brief (1- to 2-day) post-mating responses, indicating either that there is a "sperm effect" or that sperm act as carriers for SP or other seminal fluid components. Here we used RNA interference to suppress SP expression, to determine whether SP is required to elicit full post-mating responses, the magnitude of responses due to other seminal fluid components, and whether SP accounts for the "sperm effect." Receptivity was higher and egg production lower in females mated to SP knock-down males than in controls. Comparison with virgins showed that the responses were brief. SP is therefore required for normal magnitude and persistence of postmating responses. Sperm transfer and use were normal in mates of SP knock-down males, yet their post-mating responses were briefer than after normal matings, and similar to those reported in mates of spermless son-of-tudor males. The prolonged "sperm effect" on female receptivity and egg production is therefore entirely attributable to SP, but sperm are necessary for its occurrence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive selection on gene expression in the human brain

(copulation and egg-laying, respectively; Figure 1 experiments 6 and 13, and [1]). Silencing the fru GAL4 neurons in fru M virgin females does not induce egg-laying, as it does in wild-type (fru F) females (Figure 1C, experiment 7). Thus, Fru M appears to reconfigure the circuit for male rather than female behaviour in a way that cannot be explained entirely by altered patterns of neuronal acti...

متن کامل

Sustained Post-Mating Response in Drosophila melanogaster Requires Multiple Seminal Fluid Proteins

Successful reproduction is critical to pass genes to the next generation. Seminal proteins contribute to important reproductive processes that lead to fertilization in species ranging from insects to mammals. In Drosophila, the male's accessory gland is a source of seminal fluid proteins that affect the reproductive output of males and females by altering female post-mating behavior and physiol...

متن کامل

Evolutionary Rate Covariation Identifies New Members of a Protein Network Required for Drosophila melanogaster Female Post-Mating Responses

Seminal fluid proteins transferred from males to females during copulation are required for full fertility and can exert dramatic effects on female physiology and behavior. In Drosophila melanogaster, the seminal protein sex peptide (SP) affects mated females by increasing egg production and decreasing receptivity to courtship. These behavioral changes persist for several days because SP binds ...

متن کامل

Feeding, fecundity and lifespan in female Drosophila melanogaster

Male seminal fluid proteins induce a profound remodelling of behavioural, physiological and gene signalling pathways in females of many taxa, and typically cause elevated egg production and decreased sexual receptivity. In Drosophila melanogaster, these effects can be mediated by an ejaculate 'sex peptide' (SP), which, in addition, contributes significantly to the cost of mating in females. Rec...

متن کامل

The Drosophila melanogaster Seminal Fluid Protease “Seminase” Regulates Proteolytic and Post-Mating Reproductive Processes

Proteases and protease inhibitors have been identified in the ejaculates of animal taxa ranging from invertebrates to mammals and form a major protein class among Drosophila melanogaster seminal fluid proteins (SFPs). Other than a single protease cascade in mammals that regulates seminal clot liquefaction, no proteolytic cascades (i.e. pathways with at least two proteases acting in sequence) ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 17  شماره 

صفحات  -

تاریخ انتشار 2003